
The Standard Autonomous File Server, A Customized,
Off-the-Shelf Success Story

Susan K. Semancik and Annette M. Conger

NASA Goddard Space Flight Center’s Wallops Flight Facility, Wallops Island, Virginia,
USA

{Susan.K.Semancik.1, Annette.M.Conger.1}@gsfc.nasa.gov
http://www.wff.nasa.gov/~websafs/

Abstract. The Standard Autonomous File Server (SAFS), which includes both
off-the-shelf hardware and software, uses an improved automated file transfer
process to provide a quicker, more reliable, prioritized file distribution for
customers of near real-time data without interfering with the assets involved in
the acquisition and processing of the data. It operates as a stand-alone solution,
monitoring itself, and providing an automated fail-over process to enhance
reliability.

This paper describes the unique problems and lessons learned both during the
COTS selection and integration into SAFS, and the system’s first year of
operation in support of NASA’s satellite ground network.

COTS was the key factor in allowing the two-person development team to
deploy systems in less than a year, meeting the required launch schedule. The
SAFS system has been so successful; it is becoming a NASA standard resource,
leading to its nomination for NASA’s Software of the Year Award in 1999.

INTRODUCTION

Deciding to use a commercial off-the-shelf (COTS) product as the basis or
cornerstone of your system software design is a risky business. Among the strongest
fears is the “unknown” component either of the product or the vendor. High among
concerns using COTS products are the following:

• What if the vendor goes out of business or drops the product you’ve chosen?
• What if future versions of the product change or eliminate features you were

depending on or around which you built your application?
• What if the product does not operate/function as advertised (and you don’t

discover this until you are deep into your development/schedule)?
• What if the product has errors/bugs that the vendor won’t/can’t correct, or is

willing to correct, but not in time to meet your schedule?
• What if future versions won’t operate on your platform, or version of the

operating system, or become incompatible with your hardware components or
drivers? (And these new versions contain bug fixes or features you need?)

All of these questions are even more critical if you are considering a new COTS
product or version and you perform all of your initial investigation with a demo or

pre-release version of the product. Just replace the words “future version/product”
with “the new release” for equally troubling COTS concerns.

PROJECT

This was the situation in which we found ourselves in the summer of 1997, when the
assignment was given to design, develop, deploy, and field-test an autonomous file
server (Standard Autonomous File Server - SAFS) at National Aeronautics and Space
Administration (NASA) ground stations in time to support the Quick Scatterometer
(QuikSCAT) satellite launch planned in less than one year. This system had to
manage distribution of satellite files to customers of near real-time data without
interfering with the assets involved in the acquisition of the data at the ground
stations, and the processing of the data by the customers. By the Fall of 1997, the
SAFS team of two had budgeted the timeline as shown in Figure 1.

This gave us roughly five months for design and prototyping, three months for
procurement and development, and three months for shipping and personally
installing systems at NASA Goddard Space Flight Center in Greenbelt, Maryland;
NASA Wallops Flight Facility (WFF) at Wallops Island, Virginia; Poker Flat
Research Range in Fairbanks, Alaska; and the new satellite tracking station in
Svalbard, Norway.

Fig. 1. SAFS Project Timeline for QuikSCAT

DESIGN

We designed a system that would allow the SAFS to operate as a stand-alone solution,
monitoring itself, and providing an automated fail-over process for enhanced
reliability. Soon after the initial assignment, we began a search and evaluation
process for COTS products, not only to help meet the schedule, but also because it is
NASA’s policy to use COTS software and hardware products wherever possible to
save time and money, as well as to re-use government-developed products in the most

efficient manner. With our aggressive schedule, we desperately needed a COTS
software product that would provide the reliable, guaranteed file delivery part of our
design, and COTS hardware for speed, reliability, and redundant, hot-swappable
storage.

We were able to pattern part of our software design for automated file handling and
messaging on a system developed at WFF, and concentrated our COTS software
search for a product that would provide a quicker, more reliable, prioritized file
distribution.

We created a prioritized list of features desired in the COTS software product to help
us better evaluate available products:

• Reliable, guaranteed file delivery
• Recovery from point of failure
• Multi-platform support
• Stop-resume transmission control
• Auto-detection of incoming files
• Processing flexibility:

− Multiple distribution points
− Pre-/post- processing capability
− Alternative actions on failed transfers

• File transfer security
• Programmable bandwidth

COTS RESEARCH

We searched the Internet and talked with local experts having experience in similar
areas. But while the Internet was helpful, it did not yield a comprehensive list.
During peer and preliminary design reviews, especially those including people from
other NASA Centers, we gained additional insights and sources to consider. This is
actually how we were pointed in the direction of the product we eventually chose.

The Internet is very useful in gaining detailed information about the products and
vendors under consideration during a COTS search, and in some cases, even getting
demonstration versions of products. It is imperative to obtain demo versions of the
COTS software or loaner COTS hardware whenever possible to be sure features are
as advertised and that the learning curve to use the product will meet your timeline. It
is also important to get references from vendors of the customers that are using their
hardware or software in similar situations. By contacting these sources, you may be
able to find out if they had product or vendor problems and if so, how easily were
they resolved, and if there are any configuration/use limitations with the product
before actually committing any of your resources.

COTS SOFTWARE

At the end of our COTS software product investigation, we had a list of several
products with features similar to those contained in our list. Some had only a few of
our desired features, and others had more capabilities, such as multicasting, which
were not part of our project’s requirements. A “lesson learned” that worked very
much in our favor was to select a product appropriately sized for our application, and
a vendor whose size did not inhibit a working relationship with us. This way we did
not pay for more features than we needed. In general, a product with a smaller feature
set is more likely to be less complex for the vendor to maintain, thus giving faster
responses to bug fixes. Also, if the product is closely aligned with your project’s
requirements, the enhancements you suggest may fit into the vendor’s development
plan, also resulting in faster upgrades.

Our development process started with a demo copy of the COTS software product
that best matched our requirements. We followed on-line vendor tutorials and
documentation to gain a good foundation in the use of the product. By this simple
approach (which some developers skip to save time, but which usually results in lost
time due to false starts and lack of overall understanding of the product’s
capabilities), we gained insight about how to best incorporate the product into our
design. During this initial period, we developed a working relationship with the
vendor as he responded to our inquiries for clarifications about more complex
procedures, especially involving fail-over strategies. The vendor’s willingness to
assist us and to extend our trial period while we determined how well the product fit
with our requirements, were both good indicators of the level of support we could
expect after purchasing the product.

During this trial period, we were able to demonstrate the ease of integration of the
COTS software product with the re-used software scripts and the COTS software
processing flexibility. We purchased different hardware versions of the COTS
software product in order to simulate in a lab how the product would work on various
customer’s platforms, as well as to model the field operational environment. What we
learned from this prototyping was passed on to project customers, helping them to
reduce their learning curve with the product, and making them a more willing partner
in our development effort. We also encouraged them to purchase vendor support as
we did, because of the time and sanity it could save.

To accommodate those customers who decide not to use this COTS software for file
transfer with the SAFS system, we built in an alternative option to use File Transfer
Protocol (FTP) for their file acquisition from the SAFS. Most of our projects’
customers choose to use the COTS software because of the added security, reliability,
and guaranteed delivery that it provides through our system.

COTS HARDWARE

The COTS hardware search concentrated on servers and redundant array of
independent disks (RAID) components that would be robust, reliable, and expandable,
meet our speed requirement, and be maintainable in remote locations. At the time,
our investigations found the fastest server and RAID drive systems were not available
from the same vendor. This led us to a dilemma: we could either get all components
from the same vendor and not meet all our performance requirements, or get the best
components from multiple vendors, and possibly have configuration or compatibility
problems later. After much discussion in peer and pre-design reviews, we were able
to convince any opponents that the latter decision was the best. While this approach
is likely to be more expensive, it gave the results we needed to meet our aggressive
schedule. We did have a few instances in our early development where it was more
difficult to track hardware/configuration problems to the specific component because
of the multiple vendors, but the performance aspects of the system far out-weighed
this difficulty.

The expansion capability of any COTS hardware system and the level of vendor
support needed, both during development and deployment, can heavily influence the
product you choose. The RAID vendor we selected had the fastest and easiest system
to expand, and also used an external personal computer (PC) in their design to free the
server from the RAID monitoring and configuration tasks. With their worldwide
network of support personnel, they could provide a field engineer to accompany us
during field installations to optimally configure our systems, which greatly helped us
in remote locations such as the satellite tracking station in Svalbard, Norway. The
integration of COTS software with the configuration of COTS hardware from
different vendors can be a significant effort. Whenever possible, it is important for
the design/development team to personally perform on-site installation of their
systems. It gives the team concrete knowledge about field configuration of the
system, an appreciation for the operating environment, and an opportunity to develop
a rapport with the staff for future problem resolution.

VENDOR SUPPORT

We found it was crucial to have support/maintenance contracts from both COTS
hardware and software vendors through our development, deployment, and first year
of operation in order to have quick resolution to problems, and to assist in optimally
integrating and configuring the systems. The first year of operation is normally a
“shake-down” period that tests your system to the limit in situations not always
possible to predict or duplicate in a prototyping environment. Under normal
conditions, no operator involvement is needed for the SAFS. Our biggest problem
during operations came from an unexpected source – the operators of an external
system that normally sends data to the SAFS through an automatic process. While we
designed the system well to handle automated processing, the ever-changing
operational environment at the ground stations (both commercial and NASA) led to
occasional operator errors when they needed to perform manual transfers from their

systems to the SAFS. This put us in the mode of training new personnel in correct
procedures to follow to avoid problems with options we are using within the
automation part of the COTS software product. We developed an early warning
system that will alert us when such errors are occurring so we can manually correct
them before it causes a system problem while we explore options for an automated
solution.

PROTOTYPING

It is important to prototype your system’s hardware and software in a lab setting as
similar to the field environment as possible. Testing should be ongoing while your
design matures in order to improve the design and to identify any problems while you
are still in the development stage, rather than in field-testing, at which stage it may be
too costly or impossible to retrofit a solution. Utilities created to help validate and
verify development efforts should be considered as tools useful for operational
assessments as well. For example, while developing in the lab, we created a display
that visually indicates the file transfers and message interactions of the systems as
they occur. This not only helped us in our development effort, but also was especially
helpful in our project readiness demonstration. It was so indispensable, that it
eventually led to the creation of an automated web site that continually reports on the
operational file transfers and message interactions at both the ground station and
customer levels so all users can track the SAFS performance.

DEVELOPMENT

Using an iterative waterfall methodology, we developed the prototype in stages in the
lab environment, with ongoing integration and testing through the design’s maturity.
The initial phase was critical, since we not only learned how to master the intricacies
of the products, but also were successful in prototyping a system to handle file
transfers for single project support. This was the first version released to support the
QuikSCAT project, with Figure 2 illustrating our software configuration.

After QuikSCAT launched, we had to maintain our operational systems in the field
while we continued working on phase 2, multiple project support. This involved
analysis of both feedback from our end users and expanded requirements to handle
more projects desiring to use the SAFS. Additional projects meant new deployments
at the satellite tracking station in McMurdo, Antarctica; and at the University of
Alaska in Fairbanks, AK; and the need for COTS hardware, operating system, and
software upgrades and enhancements. The second phase of our design needed a more
robust, generic system, with a customizable priority scheme to handle multiple
projects. After discussing the possible techniques for accomplishing this with the
COTS software vendor, he enhanced his product by implementing a file priority
parameter that would allow files of equal priority to transfer using shared bandwidth,
and files of lower priority to suspend transfers until higher priority transfers
completed.

Fig. 2. SAFS Component Design

ENHANCEMENTS

What helped us immensely in being able to handle everything in a timely fashion was
keeping a prototype system in our lab. We used it to test enhancements to the system,
and to configure the COTS hardware upgrades before field installation. Problems
discovered in the lab were easier to resolve because resources were more accessible
and operational systems did not have to be disrupted. Both of the COTS hardware
vendors had the desirable feature of also being able to remotely access their
components for debug/problem resolutions in the field. One desirable feature in a
COTS software product is its ability to perform internal logging. Since the internal
operations of a COTS software product are often hidden from the user, this feature
may be the only way to trace errors or define the point within the product at which
they occur, thereby getting speedier resolution to problems during either the
development or operational periods. Though this can also be a possible source of

COTS/FTP

Project

Incoming Files

COTS/FTP

Outgoing Files

Messaging

Cus tomer
Customer

COTS/Mail

Cus tomer
Cus tomer

Customer

COTS/FTP

Cus tomer
Cus tomer

Customer

COTS/Mail

Cus tomer
Customer

COTS/FTP

-Detect incoming files

-Prioritize outgoing files
-Transfer data to customers

-Trigger mail messages

-Control outgoing transfer traffic

-Transfer failover processing

-Log incoming file events

-Archive incoming files
-Log outgoing file events

-Log receipt confirmations

-Perform housekeeping functions

-Perform monitoring functions

-Send delivery notifications

-Perform housekeeping
-Monitor activities/systems

-File Archives

-File Redundancy

-Project Setups

-Network Interface

C Programs

WEB Reports ~ Heartbeat

RAID Storage

Housekeeping

Shell Scripts

Mail Messages ~ Monitoring

Operating System

Mail ~ CRON ~ Network Configuration

COTS

File Detection ~ Failover Logic

Prioritization ~ Guaranteed Transfers

-Create/update WEB reports

-Provide system heartbeat on network

Project

Server

COTS/FTP

Project

COTS/FTP

Project

Incoming Files

COTS/FTPCOTS/FTP

Outgoing Files

Messaging

Cus tomer
Customer

Cus tomer
Customer

COTS/Mail

Cus tomer
Cus tomer

Customer

COTS/FTP

Cus tomer
Cus tomer

Customer

COTS/Mail

Cus tomer
Customer

Cus tomer
Customer

COTS/FTP

-Detect incoming files

-Prioritize outgoing files
-Transfer data to customers

-Trigger mail messages

-Control outgoing transfer traffic

-Transfer failover processing

-Log incoming file events

-Archive incoming files
-Log outgoing file events

-Log receipt confirmations

-Perform housekeeping functions

-Perform monitoring functions

-Send delivery notifications

-Perform housekeeping
-Monitor activities/systems

-File Archives

-File Redundancy

-Project Setups

-Network Interface

C Programs

WEB Reports ~ Heartbeat

RAID Storage

Housekeeping

Shell Scripts

Mail Messages ~ Monitoring

Operating System

Mail ~ CRON ~ Network Configuration

COTS

File Detection ~ Failover Logic

Prioritization ~ Guaranteed Transfers

-Create/update WEB reports

-Provide system heartbeat on network

Project

Server

some problems. For instance, one problem did not show up until the systems had
been running for about a year. In that time, the quantity of file activity had generated
so many logging files that it was causing system errors and poorer performance. It
was at this point that we learned there were COTS software housekeeping functions
we needed to perform on a regular basis to keep the system operating optimally.

As a system matures and expands, it is important not to approve all requests for
additional options by customers or new projects that come on line. We tried not to
make concessions that would compromise the performance of the system or would
make the design less generic and more difficult to maintain. We did have to make
some adjustments to handle project file names as well as the SAFS naming scheme
initially developed for QuikSCAT support. These changes were accomplished in a
reasonably short period because our design was flexible and modular in nature.

LESSONS LEARNED

Table 1 illustrates the lessons we have learned with the SAFS project and how these
lessons impacted our design, development and maintenance efforts.

Table 1. SAFS Lessons Learned

LESSON IMPACT
Use COTS products and re-use
previously developed internal products.

Shortens development time.

Create a prioritized list of desired COTS
features.

Focuses the COTS evaluation effort for
a better decision.

Talk with local experts having
experience in similar areas.

Helps to identify additional resources to
explore or re-use; improves the design.

Conduct frequent peer and design
reviews.

Improves the design; provides early
identification of changes to either the
project requirements or operational
environment.

Obtain demonstration versions of COTS
products.

Assures features are as advertised;
determines if product learning curve
will fit into project timeline; helps
identify configuration/use limitations.

Obtain customer references from
vendors.

Helps identify previous product,
configuration, or vendor problems, and
how easily they were resolved

Select a product appropriately sized for
your application.

Reduces cost, design complexity, and
maintenance of product.

Choose a product closely aligned with
your project’s requirements.

Results in vendor being more likely to
incorporate requested enhancements
into the product, resulting in faster
upgrades.

Select a vendor whose size will permit a
working relationship.

Improves vendor response time for
requests for clarifications and help with
advanced applications.

Use vendor tutorials, documentation,
and vendor contacts during COTS
evaluation period.

Results in time saved by gaining insight
into how best to incorporate the product
into your design; provides baseline for
level of vendor support to expect after
purchase.

Prototype your systems hardware and
software in a lab setting as similar to the
field environment as possible; simulate
how the product will work on various
customer platforms; model the field
operations; develop in stages with
ongoing integration and testing

Helps to identify problems while still in
the development stage, not in
operations when it may be disruptive or
not possible to retrofit a solution;
provides a more mature design resulting
in fewer problems in the field.

Pass pertinent information on to your
customers

Helps to reduce their learning curve
with the COTS product, and makes
them a more willing partner in the
development effort.

Accommodate your customers, where
possible, by building in alternative
options

Provides flexibility and modularity to
the design, making the system more
robust and generic.

Don’t approve all requests for
additional options by customers or new
projects that come on line.

Avoids compromising the performance
of your system, making it less generic
or more difficult to maintain.

Select the best COTS components for
product performance even if they are
from multiple vendors.

Promotes product performance in lieu
of design simplicity.

Consider the expansion capability of
any COTS product

Ensures ease of future integration
without redesign.

Determine if the vendors support is
adequate for your requirements

Enables worldwide on-site personnel
for hardware support in remote sites.

Personally perform on-site installations
whenever possible.

Gives the team concrete knowledge
about the system’s field configuration,
an appreciation for the operating
environment, and an opportunity to
develop a rapport with the field staff.

Have support/maintenance contracts for
hardware and software through
development, deployment, and first year
of operation

Saves time and your sanity; use support
to optimally configure and integrate the
COTS product into your system

Create visual representations of system
interactions where possible.

Helps during development effort, in
demonstrations of the project’s
readiness, and provides a prototype for
an operational utility.

Obtain feedback from end users Helps to identify problems early;

provides a more flexible design; gives
an indication of system performance
during operations.

Maintain the prototype system after
deployment.

Provides a non-operational test-bed for
enhancements and for configuring
upgrades

Select COTS products with the ability
to do internal logging

Helps trace errors or define the point
within the COTS product in which they
occur; produces speedier resolution to
problems.

SUMMARY

In summary, we were able to mitigate some of the risks/concerns we had with using
COTS products by considering a vendor’s history and reputation through their
customer’s feedback, our success with trial versions on multiple platforms, vendor
support during evaluation periods, modular design, prototyping, maintenance and
support contracts, frequent contacts with vendors and customers, peer and design
reviews, constant testing, on-site spares for operational backups, and re-use of
successful operational software. We found the addition of an operation’s contractor
assigned to operational system administration and maintenance responsibility helped
greatly in allowing the team to complete development of phase 2. For those desiring
more details about the SAFS design, development, and deployment phases, please see
the paper at the following link: www.wff.nasa.gov/~websafs/iafpaper.pdf .

The SAFS project was successfully transitioned to an operations contract this year,
January 2001, which was made easier by the success and reliability already proven by
the SAFS system in support of QuikSCAT and Earth Observing-1 (EO-1) satellite
missions. Our successful integration of COTS products into the SAFS system has
been key to its becoming accepted as a NASA standard resource for file distribution,
and leading to its nomination for NASA’s Software of the Year Award in 1999.

